
ar
X

iv
:1

80
1.

00
84

1v
1

 [
cs

.C
L

]
 2

 J
an

 2
01

8

EXPLORING ARCHITECTURES, DATA AND UNITS FOR STREAMING END-TO-END

SPEECH RECOGNITION WITH RNN-TRANSDUCER

Kanishka Rao, Haşim Sak, Rohit Prabhavalkar

Google Inc.,

Mountain View, CA, U.S.A.

{kanishkarao,hasim,prabhavalkar}@google.com

ABSTRACT

We investigate training end-to-end speech recognition

models with the recurrent neural network transducer (RNN-

T): a streaming, all-neural, sequence-to-sequence architecture

which jointly learns acoustic and language model components

from transcribed acoustic data. We explore various model ar-

chitectures and demonstrate how the model can be improved

further if additional text or pronunciation data are available.

The model consists of an ‘encoder’, which is initialized from

a connectionist temporal classification-based (CTC) acoustic

model, and a ‘decoder’ which is partially initialized from

a recurrent neural network language model trained on text

data alone. The entire neural network is trained with the

RNN-T loss and directly outputs the recognized transcript as

a sequence of graphemes, thus performing end-to-end speech

recognition. We find that performance can be improved fur-

ther through the use of sub-word units (‘wordpieces’) which

capture longer context and significantly reduce substitution

errors. The best RNN-T system, a twelve-layer LSTM en-

coder with a two-layer LSTM decoder trained with 30,000

wordpieces as output targets achieves a word error rate of

8.5% on voice-search and 5.2% on voice-dictation tasks and

is comparable to a state-of-the-art baseline at 8.3% on voice-

search and 5.4% voice-dictation.

Index Terms— ASR, end-to-end, sequence-to-sequence

models, recurrent neural networks transducer, wordpiece.

1. INTRODUCTION

The current state-of-the-art automatic speech recognition

(ASR) systems break down the ASR problem into three main

sub-problems: acoustic, pronunciation and language model-

ing. Speech recognition involves determining the most likely

word sequence, W = w1, ..., wn, given an acoustic input

sequence, x = x1, ..., xT , where T represents the number of

frames in the utterance:

W ∗ = argmax
W

P (W |x), (1)

which is typically decomposed into three separate models, as

follows:

W ∗ = argmax
W

∑

φ

P (x, φ|W)P (W) (2)

≈ argmax
W,φ

p(x|φ)P (φ|W)P (W) (3)

The acoustic model, p(x|φ), predicts the likelihood of the

acoustic input speech utterance given a phoneme sequence,

φ; for conditional models that directly predict P (φ|x), the

likelihood is typically replaced with a scaled likelihood ob-

tained by dividing the posterior with the prior, P (φ), in so-

called hybrid models [1]. Deep recurrent neural networks

with long short-term memory (LSTM) cells [2] have recently

been shown to be ideal for this task [3, 4, 5]. The pronunci-

ation model, P (φ|W), is typically built from pronunciation

dictionaries curated by expert human linguists, with back-off

to a grapheme-to-phoneme (G2P) model [6] for out of dictio-

nary words. Finally, an N-gram model trained on text data

may be used as a language model, P (W).
Recently, there has been considerable interest in training

end-to-end models for ASR [7, 8, 9], which directly output

word transcripts given the input audio.1 Thus, these models

are much simpler than conventional ASR systems as a single

neural network can be used to directly recognize utterances,

without requiring separately-trained acoustic, pronunciation

and language model components. A particular class of ar-

chitecures known as sequence-to-sequence models [10] are

particularly suited for end-to-end ASR as they include an en-

coder network which corresponds to the acoustic model of

a conventional system and a decoder network which corre-

sponds to the language model.

One drawback of typical encoder-decoder type archi-

tectures (e.g., [7, 9]) is that the entire input sequence is

encoded before the output sequence may be decoded and thus

these models cannot be used for real-time streaming speech

recognition. Several streaming encoder-decoder architectures

have been proposed previously, including the neural trans-

ducer [11], the recurrent neural aligner (RNA) [12], and the

1 In the context of this work, we consider models that are all-neural, and

directly output word transcripts from audio utterances as being end-to-end.

http://arxiv.org/abs/1801.00841v1

recurrent neural network transducer (RNN-T) [13, 14]. In

particular, these architectures allow the output to be decoded

as soon as the first input is encoded, without introducing ad-

ditional latency incurred when processing the entire utterance

at once. In this work we only consider streaming recognition

architectures, specifically the RNN-T model.

Despite recent work on end-to-end ASR, conventional

systems still remain the state-of-the-art in terms of word

error rate (WER) performance. For example, in our previ-

ous work [15] we evaluated a number of end-to-end models

including attention-based models [7] and RNN-T [13, 14]

trained on ∼12,500 hours of transcribed training data; al-

though end-to-end approaches were found to be comparable

to a state-of-the-art context-dependent phone-based baseline

on dictation test sets, these models were found to be sig-

nificantly worse than the baseline on voice-search test sets.

End-to-end systems are typically trained using transcribed

acoustic data sets, which are relatively expensive to generate

and thus much smaller than text-only data sets, which are

used to train LMs in a traditional speech recognizer. A defi-

ciency of end-to-end systems appears to be in their language

modeling capacity [15] which may be because large text-only

data are not utilized in end-to-end systems.

In this work we explore a particular sequence-to-sequence

architecure, RNN-T, and show how text and pronunciation

data may be included to improve end-to-end ASR perfor-

mance. Another contribution of this work is to investigate the

use of wordpieces [16], which have been explored previously

in the context of machine translation, as a sub-word unit for

end-to-end speech recognition.

The paper is organized as follows: in Section 2 we de-

scribe the RNN-T and how it may be used for streaming

recognition. Section 3 describes how the RNN-T is trained

including the units, architectures and pre-training parts of the

model. The experimental setup including the baseline system

are detailed in Section 4. Section 5 compares the word error

rate performance of various RNN-T models and the baseline

to show relative improvement. We find that the techniques

introduced in this work mostly improve the language mod-

eling of the RNN-T, Section 6 shows some select examples

of such improved recognition. A concluding summary and

acknowledgements are in Section 7 and Section 8.

2. RNN-TRANSDUCER

The RNN-T was proposed by Graves [13] as an extension to

the connectionist temporal classification (CTC) [17] approach

for sequence labeling tasks where the alignment between the

input sequence, x, and the output targets y is unknown. This

is accomplished in the CTC formulation by introducing a spe-

cial label, called the blank label, which models the probability

of outputting no label corresponding to a given input frame.

CTC has been widely used in previous works to train end-to-

end ASR models [8, 18, 19]. However, a major limitation of

Fig. 1. The RNN-T model. The model consists of an encoder

network, which maps input acoustic frames into a higher-level

representation, and a prediction and joint network which to-

gether correspond to the decoder network. The decoder is

conditioned on the history of previous predictions.

CTC is its assumption that model outputs at a given frame are

independent of previous output labels: yt ⊥⊥ yj |x, for t < j.

The RNN-T model, depicted in Figure 1, consists of an

encoder (referred to as the transcription network in [13]), a

prediction network and a joint network; as described in [15],

the RNN-T model can be compared to other encoder-decoder

architectures such as “listen, attend, and spell” [7], if we view

the combination of the prediction network and the joint net-

work as a decoder. The encoder is an RNN which converts

the input acoustic frame xt into a higher-level representa-

tion, henc
t , and is analogous to a CTC-based AM in a stan-

dard speech recognizer. Thus, as in CTC, the output of the

encoder network, henc
t , is conditioned on the sequence of pre-

vious acoustic frames x0, · · · , xt.

henc
t = f enc(xt), (4)

The RNN-T removes the conditional independence as-

sumption in CTC by introducing a prediction network, an

RNN that is explicitly conditioned on the history of previous

non-blank targets predicted by the model. Specifically, the

prediction network receives as input the last non-blank label,

yu−1, to produce as output hdec
u .

hdec
u = f dec(yu−1). (5)

Finally, the joint network, is a feed-forward network that

combines the outputs of the prediction network and the en-

coder to produce logits (zt,u) followed by a softmax layer to

produce a distribution over the next output symbol (either the

blank symbol or one of the output targets).

zt,u = f joint(henc
t ,hdec

u) (6)

We use the same form for f joint as described in [14]. The

entire network is trained jointly to optimize the RNN-T

loss [13], which marginalizes over all alignments of target

labels with blanks as in CTC, and is computed using dynamic

programming.

During each step of inference, the RNN-T model is fed

the next acoustic frame xt and the previously predicted la-

bel yu−1, from which the model produces the next output

label probabilities P (y|t, u). If the predicted label, yu, is

non-blank, then the prediction network is updated with that

label as input to generate the next output label probabilities

P (y|t, u + 1). Conversely, if a blank label is predicted then

the next acoustic frame, xt+1, is used to update the encoder

while retain the same prediction network output resulting in

P (y|t+ 1, u). In this way the RNN-T can stream recognition

results by alternating between updating the encoder and the

prediction network based on if the predicted label is a blank

or non-blank. Inference is terminated when blank is output at

the last frame, T .

During inference, the most likely label sequence is com-

puted using beam search as described in [13], with a minor

alteration which was found to make the algorithm less com-

putationally intensive without degrading performance: we

skip summation over prefixes in pref(y) (see Algorithm 1

in [13]), unless multiple hypotheses are identical.

Note that unlike other streaming encoder-decoder archi-

tectures such as RNA [12] and NT [11], the prediction net-

work is not conditioned on the encoder output. This allows

for the the pre-training of the decoder as a RNN language

model on text-only data as described in Section 3.

3. UNITS, ARCHITECTURES AND TRAINING

We investigate the use of graphemes and sub-words (word-

pieces) as output lexical units in RNN-T models. For the

graphemes, we use letters (a-z), digits (0-9), special sym-

bols (&.’%/-:) and a space symbol (<space>). The

space symbol is used for segmenting recognized grapheme

sequences to word sequences.

State-of-the-art large vocabulary speech recognition sys-

tems recognize millions of different words, inference for

RNN-T with that many output labels would be impractically

slow. Therefore, as subword units, we use wordpieces as

described in [16]. We train a statistical wordpiece model

with word counts obtained from text data for segment-

ing each word individually into subwords. An additional

space symbol is included in subword units. An exam-

ple segmentation for the sentence tortoise and the

hare is <tor> <to> <ise> <space> <and>

<space> <the> <space> <ha> <re>. Word-

pieces have be shown to benefit end-to-end recognition [20]

since they offer a balance with longer context than graphemes

and a tunable number of labels. Since the wordpiece model

is based on word frequencies, more common words appear as

a single label. A vocabulary of 1,000 generated wordpieces

includes words like ‘mall’, ‘remember’ and ‘doctor’ while a

vocabulary of 30,000 wordpieces also includes less common

words like ‘multimedia’, ‘tungsten’ and ‘49er’. The word-

piece models may also output any word that the grapheme

model may; we find that all the graphemes are included in the

wordpiece vocabularies.

For the encoder networks in RNN-T models, we exper-

imented with deep LSTM networks (5 to 12 layers). For

the decoder networks, we used a stack of 2 layer LSTM net-

work, a feed-forward layer and a softmax layer. In addition to

training models with random initialization of parameters, we

explored variations of initializing encoder and decoder net-

work parameters from pre-trained models. It has been pre-

viously shown that initializing RNN-T encoder parameters

from a model trained with the CTC loss is beneficial for the

phoneme recognition task [14]. We experimented with ini-

tializing encoder networks from models trained with the CTC

loss and with initializing LSTM layer parameters in predic-

tion networks from LSTM language models trained on text

data. After initialization of encoder and prediction network

weights from separate pre-trained models, the entire RNN-T

model weights are trained with the RNN-T objective.

We show one example architecture for the RNN-T word-

piece model in Figure 2. The figure also shows the pre-trained

CTC LSTM acoustic model and LSTM language model ar-

chitectures used to initialize the encoder and prediction net-

work weights. The dotted arrows indicate the pre-trained lay-

ers used to initialize specific layers in the RNN-T model. The

encoder networks in RNN-T models are pre-trained with the

CTC loss using phonemes, graphemes and wordpieces as out-

put units. We investigate encoder architectures with multi-

task training using hierarchical-CTC [21] with various ’hi-

erarchies’ of CTC losses at various depths in the encoder

network. With hierarchical-CTC the encoder networks are

trained with multiple simultaneous CTC losses which was

beneficial for grapheme recognition [22]. After pre-training

all CTC losses and additional weights associated with gener-

ating softmax probabilities are discarded. For the wordpiece

models which have longer duration than graphemes, we em-

ploy an additional ’time-convolution’ in the encoder network

to reduce the sequence length of encoded activations which

is similar to the pyramidal sequence length reduction in [7].

For these models, we used filters covering 3 non-overlapping

consecutive activation vectors, thus reducing them to a sin-

gle activation vector. The LSTM layers in decoder networks

are pre-trained as a language model using the graphemes or

wordpieces as lexical units. The input to the network is a

label (grapheme or wordpiece) in a segmented sentence rep-

resented as a one-hot vector. The target for the network is the

next label in the sequence and the model is trained with the

cross-entropy loss. The weights in the softmax output layer

are discarded after pre-training and only the LSTM network

weights are used to partially initialize the RNN-T prediction

network. For wordpiece language models, we embed labels

to a smaller dimension. These embedding weights are also

used to initialize the RNN-T wordpiece models.

LSTM 5x700
LSTM 5x700

LSTM 5x700
LSTM 5x700

LSTM 5x700

LSTM 5x700
LSTM 5x700

LSTM 5x700
LSTM 5x700

LSTM 5x700 Time Convolution 3x
LSTM 2x700

LSTM 2x700

Feed Forward 700

LSTM 5x700
LSTM 5x700

LSTM 5x700
LSTM 5x700

LSTM 5x700

LSTM 5x700

CTC Phoneme

LSTM 5x700
LSTM 5x700

LSTM 5x700
LSTM 5x700 Time Convolution 3x

CTC Grapheme

LSTM 2x700
LSTM 2x700

CTC Wordpiece

CE Wordpiece

RNN-T Wordpiece

Input Embedding LSTM 2x1000
LSTM 2x1000

Input Embedding LSTM 2x1000
LSTM 2x1000

Acoustic Feature

Acoustic Feature

Input Wordpiece

Input Wordpiece

RNN-T Training

Encoder Hierarchical-CTC Pre-training

Decoder Language Model Pre-training

Fig. 2. The various stages of training a wordpiece RNN-T. The encoder network is pre-trained as a hierarchical-CTC network

simultaneously predicting phonemes, graphemes and wordpieces at 5, 10 and 12 LSTM layers respectively. A time convolu-

tional layer reduces the encoder time sequence length by a factor of three. The decoder network is trained as a LSTM langauge

model predicting wordpieces optimized with a cross-entropy loss. Finally, the RNN-T network weights are initialized from the

two pre-trained models, indicated by the dashed lines, and the entire network is optimized using the RNN-T loss.

4. EXPERIMENTAL SETUP

We compare the RNN-T end-to-end recognizer with a con-

ventional ASR system consisting of separate acoustic, pro-

nunciation and language models. The acoustic model is a

CTC trained LSTM that predicts context-dependent (CD)

phonemes first fine-tuned with sequence discriminative train-

ing as described in [5] and further improved with word-level

edit-based minimum Bayes risk (EMBR) proposed recently

by Shannon [23]. Acoustic models are trained on a set of ∼22

million hand-transcribed anonymized utterances extracted

from Google US English voice traffic, which corresponds to

∼18,000 hours of training data. These include voice-search

as well as voice-dictation utterances. We use 80-dimensional

log mel filterbank energy features computed every 10ms

stacked every 30ms to a single 240-dimensional acoustic

feature vector. To achieve noise robustness acoustic train-

ing data is distorted as described in [24]. The pronunciation

model is a dictionary containing hundreds of thousands of

human expert transcribed US English word pronunciations.

Additional word pronunciations are learned from audio data

using pronunciation learning techniques [25]. For out-of-

dictionary words a G2P model is trained using transcribed

word pronunciations. A 5-gram language model is trained

with a text sentence dataset which includes untranscribed

anonymized speech logs: 150 million sentences each from

voice-search and voice-dictation queries, and anonymized

typed logs including tens of billion sentences from Google

search from various sources. The language model is pruned

to 100-million n-grams with a target vocabulary of 4 million

and the various sources of text data are re-weighted using in-

terpolation [26] for the optimal word error rate performance.

Single-pass decoding with a conventional WFST is carried

out to generate recognition transcripts.

The RNN-T is trained with the same data as the baseline.

The CTC encoder network is pre-trained with acoustic tran-

scribed data and as with the baseline acoustic model the pro-

nunciation model is used to generate phoneme transcriptions

for the acoustic data. The RNN-T decoder is pre-trained on

the text only data as a LSTM language model, roughly half

a billion sentences from the text data are sampled accord-

ing to their count and the data source interpolation weight

(as optimized in the baseline). All RNN-T models are trained

with LSTM networks in the tensorflow [27] toolkit with asyn-

chronous stochastic gradient descent. Models are evaluated

using the RNN-T beam search algorithm with a beam of 100

for grapheme models and 25 for wordpiece models and a tem-

perature of 1.5 on the softmax. Word error rate (WER) is re-

ported on a voice-search and a voice-dictation test set with

roughly 15,000 utterances each.

5. RESULTS

We train and evaluate various RNN-T and incrementally show

the WER impact with each improvement.

A grapheme based RNN-T is trained from scratch (no pre-

training) on the acoustic data with a 5-layer LSTM encoder

of 700 cells and a 2-layer LSTM decoder of 700 cells. A fi-

nal 700 unit feed-forward layer and a softmax layer output

grapheme label probabilities. We compare this model to a

model with identical architecture but with the encoder CTC

pre-trained. We find CTC pre-training to be helpful improv-

ing WER 13.9%→13.2% for voice-search and 8.4%→8.0%

for voice-dictation.

A model with a deeper 8-layer encoder is also trained with

a multi-CTC loss at depth 5 and depth 8 where both losses are

optimized for the same grapheme targets. We found train-

ing 8-layer models without a multi-loss setup to be unsta-

ble which we acknowledge may be addressed with recent ad-

vancements in training deeper recurrent models [28] but are

not tested as part of this work. The deeper 8-layer encoder

further improves WER 13.2%→12.0% for voice-search and

8.4%→6.9% for voice-dictation.

To incorporate the knowledge of phonemes and specifi-

cally the pronunciation dictionary data we train a 8-layer en-

coder with hierarchical-CTC with a phoneme target CTC at

depth 5 and a grapheme target CTC at depth 8. In this way

the network is forced to model phonemes and is exposed to

pronunciation variants in the labels where the same word (and

thus same grapheme sequence) may have different pronunci-

ations (and thus phoneme sequences). This approach does

not address including pronunciations for words that do not

occur in the acoustic training data, which we leave as future

work. We find that the pronunciation data improves WER

12.0%→11.4% for voice-search but with little improvement

for voice-dictation. Unlike voice-search the voice-dictation

test set is comprised of mostly common words, we conjec-

ture that it may be sufficient to learn pronunciations for these

words from the acoustic data alone and thus may not benefit

from additional human transcribed pronunciations.

Next, to include the text data we pre-train a 2-layer LSTM

with 700 cells as a language model with grapheme targets.

The model is trained until word perplexity on a held-out set no

longer improves, Table 2 shows the word preplexity and sizes

of the various language models that were trained. Addition

of text data in this way improves WER 11.4%→10.8% for

voice-search and 6.8%→6.4% for voice-dictation.

We explore modeling wordpieces, with 1k, 10k and 30k

wordpieces, instead of graphemes and make several changes

to the architecture. The wordpiece encoder network is a 12-

layer LSTM with 700 cells each, trained with hierarchical-

CTC with phoneme targets at depth 5, graphemes at depth

10 and wordpieces at depth 12. Since wordpieces are longer

units we include a time convolution after depth 10 reducing

the sequence length by a factor of 3. We find that this time

convolution does not affect WER but drastically reduces train-

ing and inference time as there are 3 times fewer encoder fea-

tures that need to be processed by the decoder network. Word-

piece language models are trained similar to graphemes, since

the numbers of labels are much larger an additional input em-

bedding of size 500 is used for wordpiece models. The word-

piece language models perform much better in terms of word

perplexity (Table 2) and the RNN-T initialized from them also

see significant WER improvements (Table 1). The best end-

to-end RNN-T with 30k wordpieces achieves a WER of 8.5%

for voice-search and 5.2% on voice-dictation which is on par

with the state-of-the-art baseline speech recognition system.

6. ANALYSIS

We observe that a large part of the improvements described

in this work are from a reduction in substitution errors. Using

wordpieces instead of graphemes results in an absolute 2.3%

word error rate improvement, of this 1.5% is due to fixing

substitution errors. Inclusion of pronunciation and text data

improve voice-search word error rate by an absolute 0.6%

and 0.6% respectively, all of these are due to improvements

in word substitution errors. Many of the corrected substitution

errors seem to be from improved language modeling: words

which may sound similar but have different meaning given

the text context. Some selected examples include improve-

ments with proper nouns: ‘barbara stanwick’ recognized by

a grapheme model is fixed when using wordpieces to the

correct name ‘barbara stanwyck’. Similar improvements are

found when including pronunciation data: ‘sequoia casino’

to ‘sycuan casino’, ‘where is there’ to ‘where is xur’ and

also when including text data: ‘soldier boy’ to ‘soulja boy’,

‘lorenzo llamas’ to ‘lorenzo lamas’. We also find that word-

pieces capture longer range language context than graphemes

in improvements like ‘tortoise and the hair’ to ‘tortoise and

the hare’.

7. CONCLUSION

We train end-to-end speech recognition models using the

RNN-T which predicts graphemes or wordpieces and thus di-

rectly outputs the transcript from audio. We find pre-training

the RNN-T encoder with CTC results in a 5% relative WER

improvement, and using a deeper 8-layer encoder instead

of a 5-layer encoder further improves WER by 10% rela-

tive. We incorporate pronunciation data using a pre-training

hierarchical-CTC loss which includes phoneme targets and

find this improves the voice-search WER by 5% relative with

little impact on the voice-dictation task. To include text-only

data we pre-train the recurrent network in the decoder as

LSTM language models resulting in a overall 5% relative

Table 1. Word error performance on the voice-search and dictation tasks for various RNN-T trained with graphemes and

wordpieces with various architectures and pre-training. Also shown for each model is which types of training data are included:

acoustic, pronunciation or text. The baseline is a state-of-the-art conventional speech recognition system with separate acoustic,

pronunciation and language models trained on all available data. The parameters for the baseline system include 20 million

weights from the acoustic model network, 0.2 million for each word in the pronunciation dictionary and the 100 million n-grams

in the language model.

Layers Pre-trained Training Data Used WER(%)

Units Encoder Decoder Encoder Decoder Acoustic Pronunciation Text Params VS IME

RNN-T

Graphemes 5x700 2x700 no no yes no no 21M 13.9 8.4

Graphemes 5x700 2x700 yes no yes no no 21M 13.2 8.0

Graphemes 8x700 2x700 yes no yes no no 33M 12.0 6.9

Graphemes 8x700 2x700 yes no yes yes no 33M 11.4 6.8

Graphemes 8x700 2x700 yes yes yes yes yes 33M 10.8 6.4

Wordpieces-1k 12x700 2x700 yes yes yes yes yes 55M 9.9 6.0

Wordpieces-10k 12x700 2x700 yes yes yes yes yes 66M 9.1 5.3

Wordpieces-30k 12x700 2x1000 yes yes yes yes yes 96M 8.5 5.2

Baseline

- - - - - yes yes yes 120.2M 8.3 5.4

Table 2. The number of parameters (in millions) and word

perplexity for LSTM language model trained with different

units evaluated on a held-out set.

Units Params Perplexity

Graphemes 6M 185

Wordpieces-1k 10M 138

Wordpieces-10k 20M 130

Wordpieces-30k 59M 119

improvement. We train wordpiece RNN-Ts with 1k, 10k and

30k wordpieces targets and find that they significantly outper-

form the grapheme-based RNN-Ts. For comparison we use

a baseline speech recognizer with individual acoustic, pro-

nunciation and language models with state-of-the-art WERs

of 8.3% on voice-search and 5.4% on voice-dictation. With

a 30k wordpiece RNN-T achieving WERs of 8.5% on voice-

search and 5.2% on voice-dictation we demonstrate that a

single end-to-end neural model is capable of state-of-the-art

streaming speech recognition.

8. ACKNOWLEDGEMENTS

The authors would like to thank our colleagues: Françoise

Beaufays, Alex Graves and Leif Johnson for helpful research

discussions and Mike Schuster for help with wordpiece mod-

els.

9. REFERENCES

[1] N. Morgan and H. Bourlard, “Continuous speech recog-

nition,” IEEE Signal Processing Magazine, vol. 12, no.

3, pp. 24–42, May 1995.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, vol. 9, no. 8, pp. 1735–

1780, Nov 1997.

[3] A. Graves and J. Schmidhuber, “Framewise phoneme

classification with bidirectional lstm networks,” in IEEE

International Joint Conference on Neural Networks,

2005, vol. 4.

[4] H. Sak, A. W. Senior, and F. Beaufays, “Long short-

term memory based recurrent neural network architec-

tures for large vocabulary speech recognition,” CoRR,

vol. abs/1402.1128, 2014.

[5] H. Sak, O. Vinyals, G. Heigold, A. W. Senior, E. McDer-

mott, R. Monga, and M. Mao, “Sequence discriminative

distributed training of long short-term memory recurrent

neural networks,” in Interspeech, 2014.

[6] K. Rao, F. Peng, H. Sak, and F. Beaufays, “Grapheme-

to-phoneme conversion using long short-term memory

recurrent neural networks,” in ICASSP, 2015.

[7] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen,

attend and spell,” CoRR, vol. abs/1508.01211, 2015.

[8] D. Amodei, R. Anubhai, E. Battenberg, C. Case,

J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski,

A. Coates, and G. Diamos et al, “Deep speech 2: End-

to-end speech recognition in english and mandarin,” in

ICML, 2016.

[9] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and

Y. Bengio, “End-to-end attention-based large vocabu-

lary speech recognition,” in ICASSP, 2016, pp. 4945–

4949.

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to

sequence learning with neural networks,” in NIPS, 2014.

[11] N. Jaitly, Q. V. Le, O. Vinyals, I. Sutskever, D. Sussillo,

and S. Bengio, “An online sequence-to-sequence model

using partial conditioning,” in NIPS, 2016.

[12] H. Sak, M. Shannon, K. Rao, and F. Beaufays, “Re-

current neural aligner: An encoder-decoder neural net-

work model for sequence-to-sequence mapping,” in In-

terspeech, 2017.

[13] A. Graves, “Sequence transduction with recurrent neu-

ral networks,” in Proc. of ICASSP, 2012.

[14] A. Graves, A.-R. Mohamed, and G. E. Hinton, “Speech

recognition with deep recurrent neural networks,” in In-

ternational Conference on Machine Learning: Repre-

sentation Learning Workshop, 2013.

[15] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. John-

son, and N. Jaitly, “A comparison of sequence-to-

sequence models for speech recognition,” in Inter-

speech, 2017.

[16] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,

Q. Macherey, M. Krikun, Y. Cao, Q. Gao, and

K. Macherey et al., “Google’s neural machine transla-

tion system: Bridging the gap between human and ma-

chine translation,” CoRR, vol. abs/1609.08144, 2016.

[17] A. Graves, S. Fernández, F. Gomez, and J. Schmidhu-

ber, “Connectionist temporal classification: Labeling

unsegmented sequence data with recurrent neural net-

works,” in Proc. of the International Conference on Ma-

chine Learning (ICML), 2006.

[18] F. Eyben, M. Wöllmer, B. Schuller, and A. Graves,

“From speech to letters-using a novel neural network

architecture for grapheme based asr,” in Workshop

on Automatic Speech Recognition and Understanding

(ASRU). IEEE, 2009, pp. 376–380.

[19] A. Graves and N. Jaitly, “Towards end-to-end speech

recognition with recurrent neural networks,” in ICML,

2014.

[20] W. Chan, Y. Zhang, L. Quoc, and N. Jaitly, “Latent

sequence decompositions,” in ICLR, 2017.

[21] S. Fernández, A. Graves, and J. Schmidhuber, “Se-

quence labelling in structured domains with hierarchi-

cal recurrent neural networks.,” in International Joint

Conference on Artificial Intelligence (IJCAI), 2007.

[22] K. Rao and H. Sak, “Multi-accent speech recognition

with hierarchical grapheme based models,” in ICASSP,

2017.

[23] M. Shannon, “Optimizing expected word error rate via

sampling for speech recognition,” in Proc. of Inter-

speech, 2017.

[24] H. Sak, A. W. Senior, K. Rao, and F. Beaufays, “Fast

and accurate recurrent neural network acoustic models

for speech recognition,” in INTERSPEECH, 2015.

[25] A. Bruguier, D. Gnanapragasam, F. Beaufays, K. Rao,

and L. Johnson, “A more general method for pronunci-

ation learning,” in Interspeech, 2017.

[26] C. Allauzen and M. Riley, “Bayesian language model

interpolation for mobile speech input,” in INTER-

SPEECH, 2011.

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, and M. Devin

et al., “Tensorflow: Large-scale machine learning

on heterogeneous distributed systems,” CoRR, vol.

abs/1603.04467, 2015.

[28] J. G. Zilly, Srivastava R. K, J. Koutnı́k, and J. Schmid-

huber, “Recurrent highway networks,” CoRR, vol.

abs/1607.03474, 2016.

	1 Introduction
	2 RNN-Transducer
	3 Units, Architectures and Training
	4 Experimental Setup
	5 Results
	6 Analysis
	7 Conclusion
	8 Acknowledgements
	9 References

